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ABSTRACT

The plane strain vibration frequencies of an infinitely long hollow cylinder
are calculated exactly with the aid of a high-speed electronic computer, for a
range of wall thicknesses and azimuthal node numbers, and for a variety of
boundary conditions. These latter cover the cases: outer radial surface free,
or supported, or clamped; inner surface free, or supported, or matched to a
gas filling the inner cavity. In the last case, we calculate the attenuation of
sound in the cylinder wall, in addition to the eigenfrequencies. Qur computa-
tions of mode frequencies disclose that: (i) the shear-compressional wave
coupling in the solid is very weak (except for low frequency); (ii) for thé gas-
filled cylinder, the modes are very close either to the gas quasi-modes (gas
in a rigid-walled cylinder), or to the solid qu.si-mod:. 3 (shell with free inner

surface), depending on the geometry.

I. INTRODUCTION

A fundamental problem of the classical theory of elasticity is the determina-
tion of the normal modes of elastic vibration of a hollow cylinder. In principlé,
this problem is solved by writing down the solution of the elastic wave equation
and then determining the mode frequencies by the requirement that an appro-
priate set of boundary conditions be fulfilled. In practice, the problem is
unfortunately not so simple,

The major difficulty is that the determination of the characteristic frequen-
cies generally requires an enormous amount of numcrical work, particularly

because the secular equation involves cylinder functions whose arguments




depend on the frequency to be computed. Since tie cylinder problem possesses
a multitude of independent parameters (cylinder wall thickness, elastic con-
stants, and wave numbers) and since a considerable number of sets of boundary
conditions must be investigated, it is clear that a complete solution of the
problem would involve a formidable program of numerical computation.

Of course, in simple speciai cases, it is possible to obtain the modes for
any wall thickness from the exact theory, without undue labor. Such calcula-
tions previously have been done for the purely radial dilational modes of free,
infinitely long cyl: ‘ders, 1 and for the purely axial shear modes of free and
clamped infinite cylinders. 2

Now it is feasible, with electronic computers, to calculate exactly the
vibration modes for thick-walled cylinders in other cases as well. Already
Herrmann and Mirsky3 have presented such calculaticns for axially symrmetric
longitudinal waves in free, infinitely long cylinders. They gave numerical

results for the lowest mode and a range of wall thicknesses. Green.‘spon4

1G. s. Field, Can. J. Research A17, 141 (1939); J. A. McFadden,
J. Acoust. Soc. Am. 26, 714 (1954); A. B. Bassett, Proc. London Math.
Soc. 21, 53 (1889).
2J. H. Baitrukonis and W. G. Gottenberg, J. Acoust. Soc. Am. 31,
734 (1959).
3G. Herrmann and I. Mirsky, J. Appl. Mech., Trans. Am. Soc.
Mech. Engrs. 78, 563 (1958), 79, 1 (1957).
43. E. Greenspon, J. Acoust. Soc. Am. 31, 1682 (1959), J. Aero. Space

Sci. 27, 37 (1960).




calculated the lowest few flexural modes for free, infinitely long cylinders.

In addition, he has treated the flexural modes of the finite length cylinder,
again with free sides, but with ends either free or freely-supported. More
recently, Gazis has published extensive calculations for the infinite hollow
cylinder which is stress-free at both inner and outer radial surfaces - first,
for plane-strain vibrations, later for the general case involving axial motion
also. 5 He considered a range of geometries and axial wavelengths and several
values of the azimuthal quantum number for the lowest dozen modes or so.

The purpose of the present paper is to calculate exactly the eigenfrequencies
of the infinite length thick-walled cylinder for boundary conditions not treated
in the above work (refs. 3, 4, 5), i.e., for other than strg¢ss-free radial sur-
faces. In these computations, we shall consider plane-strain vibrations in the
infinite hollow cylinder for a range of wall thicknesses. For these modes,
however, we shall extend Gazis' work as follows.

First of all, the infinite hoilow cylinder will be treated for a number of new
combinations of boundary conditions of the usual type. Thus, we shall consider
the outer surface to be either clamped, r supported, or free, while the inner
surface is either supported, or free. These investigations lead to the discovery

that the thickness eigenmodessf.6 are generally either almost purely radial dila-

tational or almost purely azimuthal shear. The frequencies of these modesg are

5D. C. Gazis, J. Acovst. Soc. Am. 30, 786 (1958), 31, 568, 573 (1959).

5These are medes with at least one displacement node or antinode

occurring across the thickness of the cylinder wall,
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in fact very nearly the same as for the corresponding pure modes. This indi-
cates that the shear-compression coupling is quite weak for such modes.
Secondly, we shall conside: .ne very interesting situation of a gas filling
the inner part of the cylinder, 78 while the outer surface is again either
clamped, or supported, or free. In this case we are dealing with the acoustic
modes cf a two-phase system, where no matter how tenuous the gas inside the
cylinder may be, the modes of the system are often drastically different from
those calculated by neglecting the presence of the gas, We find that, depending
on the ratio of inner to outer radius, the eigenmodes are very closely similar
either to the modes of a shell with free inner surface (solid quasi-mode) or to

the modes of a gas in a rigid-walled cylinder (gas quasi-maode).

7Some special examples of this case have been given previously in a
theoretical treatment of the problem of combustion instability in a rocket motor
charged with an inside-burning tubular grain. See, (&) F. T. McClure, R. W.
Hart, and J. F. Bird, J. Appl. Phys. (scheduled for publication in May 1960),
and (b) F. T. McClure, R. W. Hart, and J. F. Bird, Proceedings of the

Princeton-A. R.f. Sclid Propellant Research Symposium (Jan. 28, 29, 1960).

aOther such two-phase systems have been treated previously by C.
Séiceanu and M. ZAginescu, Compt. rend. 247, 812 (1958) and F. L N,
Nioirdson, Trans. Roy. Inst. Tech. Stockholm, no. 73 (1953) for very simple
cases, and by R. D. Fay, J. Acoust. Soc. Am. gﬁ, 459 (1952) with a vitiating
error. Also see M. A, Biot, J. Appl. Phys. 23, §97 (1952).




Finaily, as a rather novel application of elasticity theory, we compute
exactly the attenuation of sound in the solid wall for the gas-filled cylinder,

by only slightly extending the eigenfrequency computation program.

II. DISPLACEMENT AND STRESS IN CYLINDER
Here, we shall merely display the form of the solution, since the methods
of derivation are standard procedure and readily available elsewhere. 8 In
the notation of ref. 7, we have for the displacement vector § , and stress

tensor, zlé , the following components:
S = +iei“’t cos(me) < 4,0 (k1) +A Y (k_r)
T i 1 m'c 2'm'c
+ e [Byd_(k1) + B,Y (k1)) (1)
8

Lo dwt
. 1 me . - -
S(p = -—Ec—l"- 81n (mqo ) AIJm(kc;) + AzYm(kcr)

kr
. . c 1 ?
+ ——[BJ (k1) + BzYm(ksr)]} (2)
. iwt
_ 12uew . 1
P rrST T cos(my) Aljr(x(cr) + Azyr(kcr)
+ Bljl(ksr) + Bzyl(ksr)} (3)
iZueiwt . (
PN’ =+ —F sin(m ¢) )Aljl(kcr) + A2y1(kcr)
. { ™
+ Bll(p \ksr) + Bzy(p (kS )} (4)
¢)

P. M. Morse and H. Feshbach, Methods of Theoretical P*yrics (McGraw-

H:ili Book Company, Inc., New York, 1953), pp. 142, 1840.




where
J m(x) ,
@ =ml-=- -3 @], (8)
A 2 2
. I (kcr) -m
jr(x) = Jm(x) + me(x) [1 + x2 ’ (6)
\ 1 m2 A
Jp® = T +x3, @) (7 - ) , (7
and the y functions similar but with J ﬁY m* Also,we have used,
2 < 2
e S (8a)
a s
witk the familiar relationships

- A+2 _ n
4 / ) and cs—/ v y (8b)

where A and u are the Lamé elastic moduli, p is the density of the solid
cylinder, and m is the (integer) angular wave number. The determination of

the amplitudes AI’ Az, Bl’ Bz by applying the boundary conditions accom-
plishes the solution to the problem.

II. THE BOUNDARY CONDITIONS
In this section we specify the various sets of boundary conditions that we
shall apply to the displacement and stress functions, Eqs. (1-4) 3 the inner
and outer boundaries of the cylinder, i.e., at r =a, r =b. (Since the cylinder

length is infinite, we apply no boundary conditions on planes perpendicular to
the z-axis.)

il




1. Conditions on Quter Cylindrical Surface

On this surface r = b, we shall apply any one of the three sets of condi-

tions
Prr=Pr<p=0’ atr=b, (92)
Sr = Pr¢ =0, atr=b, (9b)
Sr--S(P:—-O, atr =Db, (9¢)

corresponding to free, supported, or clamped ouside surface, respectively.

2. Conditions on Inner Cylindrical Surface

The inner surface (r = a) of the hollow cylinder we shall consider to be

either free

Prr=Pr<p=0’ atr=a, (102)
or supported
Sr = PPQ” =0, atr =2, (10b)

or to match in both stress and displacement to a gas filling the inside of the

cylinder. Assuming the gas exerts no tractive force on the solid surface, this

last case requires
Prr +iw ngr = PI'<P =Q,atr=a (10c})
where Zg is the acoustic impedance for the gas at the boundary wall,

Zg?. [p/u]r=a , With p, u being acoustic pressure and radial particie velocity

in the gas. With acoustic gas pressure of the form p(')ewtcos (mqo)Jm(kgr), we
i ap

have from u = pgw 31

that the impedance is

zg = - ipgcng(kga)/J;n(kga) (11)




where ,og is gas density, and kg = w/c?;, with cg being sound velocity in gas.
We note that Eqs. (10a), {(10b) are special cases of (10c), for zg—»o and
Zg—e)co, resgpectively.

When we apply these various sets of boundary conditions to the elastic
wave described by the displacement and stress of Eqs. (1) - (4) , we will
find in each case that four simultaneous equations which are linear and

homogeneous in the constants Al’ A,, B,, B,, neced to be satisfied. For a

A R
non-trivial solution, the determinant formed from the coefficients of the A's
and B's must be zero. This condition determines ihe eigenfrequencies of the
system, so that in the following we are to be concerned with finding the fre-

quency roots of this secular determinant for each set of boundary conditions.

IV. DIMENSIONS AND PHYSICAL CONSTANTS OF THE SYSTEM
The secular equation for the oscillation frequencies (f = w/27) will in

general involve the dimensions a, b, oi the cylinder, and the density and elastic
constants of both the cylinder and the gas inside the cylinder. For the empty
cylinder, these quantities fail into three dimensionless groups, a/b, wb/'cs, and
o (Poisson's ratio); for the gas filled cylinder, two additional parameter groups
appear, namely p g/ p, and ¢ g/ Cqe Clearly, a complete investigaition over the
whole parameter field would require an undesirably large effort. In this modest
investigation, we have confined our attention to a study of the dependence on
only a/b and wb/ Cor while selecting the constants ¢ = 0. 38, p g/ p = 1/160, and

c g/ Cy = 10/3.08 as representative values of the remaining quantities, Rather
than present tie results in terme of the two dimensioniess parameters which

we have considered, however, we elect to display the mode frequencies as a




function of inner radius for a selected value of b, and Cg because we believe
that this presentation facilitates a more concrete feeling for the nature of the

results., We shall use b = 5.75 cm, Cy = 3.08 x 104 cm/sec. (Thege values

9 dyne/ cmz),

Finally, in our illustrative calculations of sound attenuation in the solid wall,

(2
correspond to A = 4.813 x 10° dy‘ne/cm2 and 1 =1.52x 10

we shall use the dilatational and sbear viscosities A} = 200 peise, n = 200 poise,
respetively, 7
V. EXACT NUMERICAL EIGENFREQUENCIES
i. Clamped, Supported and Free Poundaries

Here we present our resulis for the six sets of boundary conditions speci-
fied by Eqs. (9), (lva), {10b), viz., outer surface either clamped or supported
or free, innar surface either supported or free.

The characteristic frequencies were calculated on the "Univac-Scientific"”
for several values of m. Roois were sought for frequencies up to 25,000 cps,
correspending to wh,/'c g< 29.4. The method of computation was to select a
value of a and then calculate the determinantal roots by an interval-halving
technique. Doing this for about 10 values of & from 2. 87 to 5.75 cm was suffi-
cient to give the mode-maps for these cases, since the curves are smooth,
These results are shown in Figs. 1 tc 8, as graphs of frequency vs inner
radius/outer radius.

Fig. 1 shows the plane-strain modes of the completely free cylinder {cf.
refs. 4,5). Those modes such that the frequency f beccmes infinite as

a-» b are the thickness modes defined in Sec. I. We follow Gazis® in calling

the remaining pair of modes '"ring modes’. Figures 2-6 illustrate how different
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sets of boundary conditions affect both thickness and ring modes.

Consider first the ring modes. The lower of these in Fig. 1 is a flexural
mode, which has non- zero frequency only for m> 2, while the upper is an
extensicnal (“breathing'') mode. 4 For each of Figs. 2-6, the extensional
free:dorn is removed (Sr = 0 at r = a and/or r = b) and the ring-extensional mode
disappears, In Figs. 5 and 6 the ring-flexural mode is also absent, since the
flexural freedom has been removed (Sw =0 at r =b). Note that for Figs. 2, 3,
and 4 the ring-flexural mode has zerc¢ frequency only for m = 0.

The thickness modes also exhibit a regular behavior as boundary conditions
are changed. One group of these modes (labeled ''S" in Figs. 1 - 6) has vre-
dominantly shear wave characteristics, while the remaining thickness modes

(labeled "D in Figs. 1 - 6} form a group with predominantly dilatational wave

character. This is particularly evideat from the manner in which the frequency
curves for each group are affected by the boundary conditions. Thus the S-made
curves for free and for supported boundaries are very nearly idertical, while
both of these are vastly different from the S curves for clamped boundaries

(see the two sets of figures, 1 - 4and 5 - 6). On the otker hand, the D-moede
curves fer supported and for clamped boundaries are strikingly alike while

both of these differ widely from the D curves ior free boundaries}‘0 (see the two

10The similarity of the D curves of Fig. 1 to those of Figs. 3,6,

despite the difference in boundary conditions, is due to the fact that in each oi
these cases the houndary conditions imply n %— =b-a,n=1,2,3...., where

A is the (ill-defined) radial wavelength.
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sets of figures, 3, € and 2, 4, 5).

These conclusions are fortified by an inspection of the machine calcula-
tions for each mode. For this discloses that indeed the S-modes have displace-
ment and stress fields largely shear in character {terms involving Bl’ B2
downinate in Eqs. (1)-(4) while the D-modes have displacement and stress
largely dilatatioral in character (terms with AI’AZ dominate in Eqs. (1) - (4»

It appears then that the eigenfrequencies of the S-modes and D-randes are
astonishingly close to those of pure shear and pure dilatational waves, respec-
tivel} (;axcept for the lowest modes of very thick shells). 7o a lesser degree,
the stress and displacement fields are similar to those of pure modes. Thus,
it is clear that the/is'hear and dilatational waves are only very weakly coupled
by our boundary conditions, and that the '"frequency mixing" is extremeiy small.

These statements are, of course, exactly true for axially symmetric modes

(m = 0 in Eqs.(}) - (4), also cf. ref. 4).

\
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2. Gas-Filled Cylinder

We now turn to the mode maps for the three sets of boundary conditions
given by Eqs. (9) with (10c), ccrresponding to a cylinder fiiled with a "stiff'"
gas, while its outer surface is either free, or supported, or clamped.

The numerical work was considerably more complicated here than for the
cases described previously (Sec. V.1). Thic is because the { vs a curves for
the gas-filled cylinder are somewhat jagged, aud at some points in the f-a
plane two modes come close together. The method of computation adopted wasg
to trace out eacih mode curve separately as a function of a, by a slope-projection
technique. Where two modes approach each other closely, accidental jumping
from one to the other was avoided by collapsing the interval until ig( k.ga)
varied smoothly. We have done these calc::lations for severai values of m .
In ref. 7, the mode maps for m = 0, clamped outer surface, and m= 2,
clamped,supported or free outer surface, have already been pr2sented. Here
we display in Figs. 7 - 12 the mode maps for m = 0, 1, 3 not heretofore
publishked.

The axially symmetric (m = 0), or pure radizl modes are shown in Figs.
7, 8 for free and supported outer surface, reapectively. We have plotted only
the dilatational modes, since in this case, the shear modes are not coupled to
the gas and thus are the same as in Figs. 1 - 6. As might e expected, the
mode frequencies correspond rather closely to either tae solid or gas guasi-
modes, i.e., the modes of a solid shel: with free inner surface, or the mocdes

of a gas in a rigid walled cylinder, respectively. These quasi-modes, where
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different from the actual modes, are indicated, for example, by the dashed
lines in Fig. 8. Since the interface boundary conditions for the quasi-modes
are mutually exclusive, the modes of the two-phase system avoid the inter-
sections of dashed lines, and alter their character in such neighborhoods from
quasi-modes of one medium to those of the other.

Figs. 9, 10, 11 show the first azimuthal modes {m = 1) for free, supported
and clamped outer surface, respectively. Here the modes of the two-phase
system are not individually pure shear or pure dilatational, as they are when
m = 0, but combinations of both, so that the mode-maps appear rather compli-
cated. We note that the "splitting" of modes at gas quasi-mode and solid quasi-
mode intersections is influenced not only by the mismatch in acoustic proper-
ties of the solid and the gas, but also by the relative amounis of shear and
dilatational moticn in the solid. For example, compare Fig. 11 with Fig. 5,
where we see that where a gas quasi-mode intersects a type "D' solid quasi-
mode, the splitting is much larger than where it intersects a type '*S" solid
quasi-mode. This may be presumed to occur because the gas exerts no shear
on the solid, and couples directly only to the dilatational motion - and, as we
saw in Sec. V.1, the "S-modes'" have little dilatational character, while the
"D-modes'" are largely dilatational. u

Finally, Fig. 12 shows the third azimuthal (m = 3) modes of the cylinder

with supported outer radial suriace.

11For further qualitative discussion of the modes of the two-phase system,

see ref. Th.: .
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V1. ATTENUATION OF SOUND IN.CYLINDER WALL
We shall now calculate the rate of dissipation of elastic wave energy in
the wall of the gas-filled cylinder {cf. ref. 7a). In a stationary state, this
is equal to the rate at which energy flows into the cylinder wall across the
inner surface (r = a.),'12 so that, in the acoustic approximation, the dissipation

rate per uuit length of solid wall is
iwS
Ta 2 r
+ 5 sz (kga-) lpol Real part of < _Pr) ’
' r=a

where P, is the gas pressure amplitude (Sec. III.2). The real part of the

boundary admittance is given to first order in the coefficients of expansive

friction (Al) and shear viscosity (n) by'7a
iwS S
r _ 21.1 d 2 d r
rr -P
a / rr|a

We note that, for the physical constants used in this work (Sec. IV), the first

Dl o)
>’l

order expression (12) should be accurate to a few percent up to frequencies
r 100 kc.

The derivatives in Eqs. (13) were calculated during the process of finding
the characteristic frequencies of the gas-filled cylinder (Sec. V. 2). Once the

eigenfrequency for a given a was determined, A (or i) was varied slightly

12The energy flux at r = b is zero for all boundary conditions treated in

this paper (see Sec. III).
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and, for the same a and the same frequency, the coefficients Al‘ AZ’ 1’

B2 were recalculated as minors of the secular determinant, The deriva-

tives are then obtained from Eqs. (1), (8), and the real part of the boundary

admittance from Eq. (12). The dilatational part of the damping (Al

= 200 poise,
n = 0) and the total damping (Al = 1 = 200 poise) are shown separately in the
figures.

Some attenuation calculations for the m = 2 modes have already been pre-
sented in ref. 7a. Here we dispiay the results for the m = 0 and m = 1 modes
of the cylinder with supported outer surface (Figs. 13 and 14). The admit-
tances are plotted as functions of a/b along those portions of the modes which
are closest to the lowest gas quasi-mode (cf. #igs. 8 and 10), since they are
very large except very close to the gas quasi-mode. In Fig. 15, we have plotted
the admittance for a first azimuthal ring-mode {(cf. lowest curve in Fig. 10) for

the supported boundary at r = b. Note that the damping is about 10, 000 times

larger for the ring-mode than for the thickness modes.
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VII. CONCLUSION

In this paper we have been concerned primarily with exact calculation of
the plane-sirain eigenfreguencies of an infiniteiy long, hollow cylinder of
arbitrary wall thickness. We have considered free, suppcrted and clamped
radial surfaces in heretofore unsiudied combinations. In a2ddition, we have
mresented new mode-maps (frequency vs geometry} for a gas-filled cylinder.
Finally, we have evaluated the attenuation of sound energy in the thick
cylindvrical snell.

From a study oi our resulis for the diverse boundary conditions it has
appeared that the thicknese eigenmodes may be regarded as consisting of two
distinct classes, the first being almost purely radial dilatational waves, (D
clzss), the second almost purely azimuthal shear waves, (S class). The
sharpnass of this dichotomy evidences very weak shear-compressional
coupling, so0 that the thickness modes shculd be easily obtainabie from the pure
modes by perturbation theory. The development of such an approximate theory
will be the topic of a subsequent paper by one oi the authers.

The calculations for the gas-filled cylinder showed that the mode frequen-
cies are very close either to those of the gas quasi-modes or to those of the
solid quasi-modes, depending on the radial dimensions of the cylinder and the
number of nodes in the radial direction.
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